(h) HIRSCHMANN
 A Belden Company

Hirschmann. Simply a good Connection.

Long distances are hardly a problem.

Optical communications take you far beyond the point
where conventional transmission systems bite the dust.

Gone are the days when you could choose operating conditions. In today's world of highly demanding process, transport and factory automation, you take what you can get: extreme temperature variations, high moisture levels, electromagnetic interference, shock and vibration (even in explosion endangered areas) - tough working conditions are now routine. Given these circumstances, weak links in data transmission, even over long distances, are not an option, and redundancy mechanisms and a total absence of interference are required even where high transmission speeds and large ranges are involved.

Optical transmission technology therefore offers obvious advantages in the manufacturing and offshore sector, in process and traffic control technology, alarm and signaling systems in control rooms, and inter-building networks: FiberINTERFACES makes it possible to transmit data over several miles/kilometers. They connect terminal devices such as computers, image-processing devices, programmable logic controllers (PLCs) and peripheral devices together. And, with their high availability and redundancy, they are able to hold their own in the harsh world of industrial applications. Fiber optic cables can be laid directly on high-power equipment or parallel to power cables, reducing planning and commissioning costs due to highly flexible topologies, integrated diagnostics and remote monitoring.

It is good to know that there is a optical communications manufacturer you can trust - one who has been active in optics since 1980 and who, with a world's first in 1984, launched its revolutionary fiber optic-based ETHERNET. And its even better if you can rely on a versatile and comprehensive modular system of field bus components, digital modules, hybrid components and OptoQuick components. FiberINTERFACES are just one important aspect of our work in the "Automation and Control" area - the Hirschmann product range extends from electrical interconnection technology to industrial ETHERNET components.

We can therefore give our customers the follwing unique benefit: under one roof, they obtain an open, highly accessible solution that covers the entire range from the field to the management level. The right product solution for every application.

Optical communication is used wherever the interferencefree transmission of high bandwidth signals over large distances is required.

FiberINTERFACES eliminate inductive, capacitative or galvanic interference.

Interference factors that don't interfere.

Temperature extremes, moisture, electromagnetic fields, as well as shock and vibration - fiber optic cables give you the best under the worst of conditions.

As a pioneer in industrial communications and inter-building network technology and a technology leader in FiberINTERFACES, Hirschmann places its many years of industrial experience at the disposal of the client. It should therefore come as no surprise that such renowned solutions providers such as Siemens, Rockwell and Schneider Automation use Hirschmann products in their system solutions. Every user can benefit from our continuous and reliable product policy, the conceptualization of which encompasses much more than the current component system
for field bus components, digital modules, hybrid components and OptoQuick components and related accessories. As a member of international standardization organizations, we actively participate in shaping the future of field bus systems. This ensures that you receive more than the advantages of a state-of-the-art optical transmission technology for your process, transport and factory automation application. You too can harvest the savings potential!

Reliable transmission of field bus signals

in spite of RFI/EMI interference.

Field buses

Field buses transmit relatively small amounts of data over large distances quickly and reliably. However, as a result of various legacy systems, there is a wide diversity of protocols and standards in use all over the world. Hirschmann therefore offers a whole range of high-quality optical fiber cable modules for various systems.

OZD Profi 12M PRO

OZD Profi G12 DE ATEX 1

- Universal and optimized devices for Profibus, Modbus, Geniusbus, WorldFIP, among others.
- Any desired topology (line, star, ring).
- All types of fibers (POF, HCS, Gradients 62.5μ and 50μ, Single mode).
- Hard real time capability.
- Extremely fast redundancy capability.
- Preventive maintenance possibilities.
- Ex-Class permits (Class 1, Div 2).
- Extended temperature and moisture ranges.
- DIN rail mechanism.

Secure and interference-free transmission

 of classic RS 232 interface signals.
Serial media converters

Clip-on modules utilize the fundamental advantages of fiber optic cables to set-up connections between the computer's COM ports and peripheral devices in automation systems - they make RFI/EMI transmission of serial communication feasible without the influence of added ground potential.

- Ranges of up to $\mathbf{1 7} \mathbf{~ k m}$ for clip-on modules.
- All types of fiber, including easy-to-use polymer/plastic fibers.

OZDV 2471

Hybrid components and OptoQuick devices

Hybrid components in various versions are integrated directly on the PCB and are intended to upgrade circuits to handle optic fiber transmission technology at the lowest possible costs. The F-SMA socket is suitable for installation on a front cover. Diode brackets, optical fiber connectors and couplings complete the range of offerings.

- High-class audio converters.
- Fast connecting optical equipments.

OSAH 200

OVKS 2,2

OVKD 01

Accessories

As a system provider, we always aim to offer you a solution that is both comprehensive as well as practical. Our products are complete only if original accessories are used. Hirschmann accessories have been developed specially for Hirschmann FiberINTERFACES according to the requirements of practice and the concrete wishes of our clients.

- DIN rail power supply units.
- Plug-in power supplies.
- DIN rail adapters.

RPS 30
RPS 80 EEC

OZDV HA

The best connections - in all areas.

Hirschmann productions are convincing all down the line.

Industrial Connectors

As the inventor of the banana plug, Hirschmann stands for the best and extremely reliable connections with constant new generations of connectors. Thanks to our wide performance range we offer the right connector solution in every case: whether with our standard products, the OpenConnector kit, bus connectors or Connectors Unlimited.

General catalog
Industrial Connectors

Product overview
Industrial Connectors

Ask for information about Industrial Connectors today and have a word with us about your individual requirements.

General catalog
Industrial ETHERNET

Product overview

Industrial ETHERNET

Hirschmann offers you flexible, highly available and future-safe network technology solutions in the usual high quality from simple switches to highperformance ETHERNET components. Plus a comprehensive and highly qualified maintenance and service program - all under one roof. The specialists from Hirschmann are always on hand to answer your questions and our worldwide distribution network guarantees you an optimum supply. Ask for information about Industrial ETHERNET now.

Under www.hicomcenter.com you will find our extensive maintenance and service offer which ranges from pre-sales consulting to after-sales support.

Hybrids modules and OptoQuick component
34 Audio Hybrids, OptoQuick Components

Accessories

supply,
].
0

Passing the ultimate hardness test: Field bus components with Ex-Class clearance.

Hirschmann devices easily handle the most demanding environmental conditions.

Harsh application environments such as oil platforms, ships, driverless trains, semiconductor factories, pipelines, steel and power plants place extreme requirements on automation solutions in terms of temperature and moisture resistance, shock and vibration handling capacity. Permits for explosion-endangered areas and for nuclear power plants are issued only to the most robust devices - like the high-quality Hirschmann optical fiber modules for different field bus systems.

You are therefore free to choose the topology. The HIPER-Ring also makes an important contribution to providing high availability of the installation and secure data transport: due to the constant dynamic ring monitoring, the reconfiguration time in the event of a network fault is only a few bus telegrams (even for long distance applications).

- Optical transmission technology closes the gap between the process computers and controllers/PLCs and the operating personnel who are located at a safe distance.

PROFIBUS

FiberINTERFACES

Field Bus > Profibus Rail Repeaters

Type	OZD Profi 12M P11	OZD Profi 12M P12
Order No.	943 728-221 interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for plastic FO; short-haul version; approval for Ex-zone 2 (Class 1, Div. 2)	943 728-321 interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for plastic FO; short-haul version; approval for Ex-zone 2 (Class 1, Div. 2)
Product description Port type and quantity	$1 \times$ optical: 2 sockets BFOC 2.5 (STR) $1 x$ electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) $1 \times$ electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1
Electrical interface Signal type Bit rate Signal delay time (optional input/output) Input/output signal Input voltage range Galvanic isolation	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s; 1.5; 3; 6; $12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting) ≤ 6.5 bit times RS 485 level $-7 \mathrm{~V} . . .+12 \mathrm{~V}$ no	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s; 1.5; 3; 6; $12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting) ≤ 6.5 bit times RS 485 level $-7 \vee \ldots+12 \vee$ no
Optical interface Wavelength Cascadibility	660 nm not limited	660 nm not limited
More Interfaces Power supply Signaling contact Measuring outputs "Optical input power"	5-pin terminal block, screw mounting 5-pin terminal block, screw mounting 2 mm sockets	5-pin terminal block, screw mounting 5 -pin terminal block, screw mounting 2 mm sockets
Network size - length of cable Single mode fiber (SM) $9 / 125 \mu \mathrm{~m}$ Multimode fiber (MM) 50/125 $\mu \mathrm{m}$		
Multimode fiber (MM) 62.5/125 $\mu \mathrm{m}$	-	-
Multimode fiber HCS (MM) 200/230 $\mu \mathrm{m}$ Multimode fiber POF (MM) 980/1000 $\mu \mathrm{m}$	400 m 8 dB link budget at 660 nm and transmitting power default $\mathrm{A}=8 \mathrm{~dB} / \mathrm{km}, 2 \mathrm{~dB}$ reserve 50 m 15 dB link budget at 660 nm and transmitting power reduced 80 m 20 dB link budget at 660 nm and transmitting power default $\mathrm{A}=0.2 \mathrm{~dB} / \mathrm{m}, 2 \mathrm{~dB}$ reserve	400 m 8 dB link budget at 660 nm and transmitting power default $\mathrm{A}=8 \mathrm{~dB} / \mathrm{km}, 2 \mathrm{~dB}$ reserve 50 m 15 dB link budget at 660 nm and transmitting power reduced 80 m 20 dB link budget at 660 nm and transmitting power default $\mathrm{A}=0.2 \mathrm{~dB} / \mathrm{m}, 2 \mathrm{~dB}$ reserve
Power requirements Operating voltage Galvanic isolation Current consumption Power consumption Output voltage/output current (pin6)	```18 ... }32\mathrm{ VDC, typ. }24\mathrm{ VDC yes max. 200 mA 4.8 W 5 VDC +5%, -10%, short circuit-proof/90 mA```	```18 ... 32 VDC, typ. }24\mathrm{ VDC yes max. }200\mathrm{ mA 4.8 W 5 VDC +5%, -10%, short circuit-proof/90 mA```
Redundancy Redundancy functions	redundant 24 V infeed	HIPER-Ring (ring structure), redundant 24 V infeed
Ambient conditions Operating temperature Storage/transport temperature Relative humidity	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \\ & \hline \end{aligned}$	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ <95\% (non-condensing)
Mechanical construction Dimensions (W x H x D) Mounting Weight Protection class Housing material	$40 \times 140 \times 77.5 \mathrm{~mm}$ DIN rail or mounting plate $500 \mathrm{~g}$ IP 40 die-cast zink	$40 \times 140 \times 77.5 \mathrm{~mm}$ DIN rail or mounting plate $500 \mathrm{~g}$ IP 40 die-cast zink
Approvals Issued or requested approvals	FM Class 1, Div. 2; C-Tick; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2)	FM Class 1, Div. 2; C-Tick; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2)
Scope of delivery and accessories Scope of delivery Accessories to order separately	device, 2 optical BFOC ST plugs, start-up instructions manual, order no. 039 629-001	device, 4 optical BFOC ST plugs, start-up instructions manual, order no. 039 629-001

OZD Profi 12M G11	OZD Profi 12M G12	OZD Profi 12M G12 EEC
943 727-221 interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for quartz glass FO; approval for Ex-zone 2 (Class 1, Div. 2)	943 727-321 interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for quartz glass FO; approval for Ex-zone 2 (Class 1, Div. 2)	943 730-321 interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for quartz glass FO; approval for Ex-zone 2; (Class 1, Div. 2); extended temperature and humidity range
$1 \times$ optical: 2 sockets BFOC 2.5 (STR) 1 x electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) 1 x electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) 1 x electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1
PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; $500 \mathrm{kbit} / \mathrm{s}$; 1.5; 3; $6 ; 12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting) ≤ 6.5 bit times RS 485 level $-7 \mathrm{~V} . .+12 \mathrm{~V}$ no	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s; 1.5; 3; 6; $12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting) ≤ 6.5 bit times RS 485 level $-7 \mathrm{~V} . . .+12 \mathrm{~V}$ no	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s; 1.5; 3; 6; $12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting) ≤ 6.5 bit times RS 485 level $-7 \text { V ... +12 V }$ no
$\begin{aligned} & 860 \mathrm{~nm} \\ & \text { not limited } \end{aligned}$	$\begin{aligned} & 860 \mathrm{~nm} \\ & \text { not limited } \end{aligned}$	$\begin{aligned} & 860 \mathrm{~nm} \\ & \text { not limited } \end{aligned}$
5-pin terminal block, screw mounting 5-pin terminal block, screw mounting 2 mm sockets	5-pin terminal block, screw mounting 5-pin terminal block, screw mounting 2 mm sockets	5-pin terminal block, screw mounting 5-pin terminal block, screw mounting 2 mm sockets
3000 m 13 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve 3000 m 15 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3.5 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve 1000 m 18 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=8 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve	3000 m 13 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve 3000 m 15 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3.5 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve 1000 m 18 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=8 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve	3000 m 13 dB link budget at $860 \mathrm{~nm} ; A=3 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve 3000 m 15 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3.5 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve 1000 m 18 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=8 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve
```18 ... 32 VDC, typ. 24 VDC yes max. 200 mA 4.8 W 5 VDC +5%, -10%, short circuit-proof/90 mA```	```18 ... 32 VDC, typ. 24 VDC yes max. 200 mA 4.8 W 5 VDC +5%, -10%, short circuit-proof/90 mA```	```18 ... 32 VDC, typ. 24 VDC yes max. }200\textrm{mA 4.8 W 5 VDC +5%, -10%, short circuit-proof/90 mA```
redundant 24 V infeed	HIPER-Ring (ring structure), redundant 24 V infeed	HIPER-Ring (ring structure), redundant 24 V infeed
$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 100 \% \text { (condensing) } \end{aligned}$
$40 \times 140 \times 77.5 \mathrm{~mm}$   DIN rail or mounting plate $500 \mathrm{~g}$   IP 40 die-cast zink	$40 \times 140 \times 77.5 \mathrm{~mm}$   DIN rail or mounting plate   500 g   IP 40   die-cast zink	$40 \times 140 \times 77.5 \mathrm{~mm}$   DIN rail or mounting plate $500 \mathrm{~g}$   IP 40   die-cast zink
FM Class 1, Div. 2; C-Tick; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2)	FM Class 1, Div. 2; C-Tick; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2)	FM Class 1, Div. 2; C-Tick; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2)
device, start-up instructions manual, order no. 039 629-001	device, start-up instructions manual, order no. 039 629-001	device, start-up instructions manual, order no. 039 629-001

## FiberINTERFACES

Field Bus > Profibus Rail Repeaters

Type	OZD Profi 12M G11-1300	OZD Profi 12M G12-1300
Order No.	943 729-221   interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for quartz glass FO; long-haul version; approval for Ex-zone 2 (Class 1, Div. 2)	943 729-321   interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for quartz glass FO; long-haul version; approval for Ex-zone 2 (Class 1, Div. 2)
Product description Port type and quantity	$1 \times$ optical: 2 sockets BFOC 2.5 (STR) $1 \times$ electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) $1 \times$ electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1
Electrical interface   Signal type   Bit rate   Signal delay time (optional input/output)   Input/output signal   Input voltage range   Galvanic isolation	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS)   9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s;   1.5; 3; $6 ; 12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting)   $\leq 6.5$ bit times   RS 485 level $-7 \vee . . .+12 \text { V }$   no	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s;   1.5; 3; 6; $12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting)   $\leq 6.5$ bit times   RS 485 level $-7 \vee \ldots+12 \vee$   no
Optical interface Wavelength Cascadibility	$\begin{aligned} & 1310 \mathrm{~nm} \\ & \text { not limited } \end{aligned}$	$1310 \text { nm }$ not limited
More Interfaces   Power supply   Signaling contact   Measuring outputs "Optical input power"	5-pin terminal block, screw mounting   5-pin terminal block, screw mounting   2 mm sockets	5-pin terminal block, screw mounting   5-pin terminal block, screw mounting   2 mm sockets
Network size - length of cable Single mode fiber (SM) $9 / 125 \mu \mathrm{~m}$   Multimode fiber (MM) 50/125 $\mu \mathrm{m}$   Multimode fiber (MM) 62.5/125 $\mu \mathrm{m}$   Multimode fiber HCS (MM) 200/230 $\mu \mathrm{m}$ Multimode fiber POF (MM) 980/1000 $\mu \mathrm{m}$	```15000 m 10 dB link budget at 1310 nm; A = 0.5 dB/km, 2 dB reserve 10000 m 12 dB link budget at 1310 nm; A = 1 dB/km, 2dB reserve 10000 m 12 dB link budget at 1310 nm; A = 1 dB/km, 2dB reserve```	```15000 m 10 dB link budget at 1310 nm; A = 0.5 dB/km, 2dB reserve 10000 m 12 dB link budget at 1310 nm; A = 1 dB/km, 2dB reserve 10000 m 12 dB link budget at 1310 nm; A = 1 dB/km, 2dB reserve```
Power requirements   Operating voltage   Galvanic isolation   Current consumption   Power consumption   Output voltage/output current (pin6)	```18 ... 32 VDC, typ. 24 VDC yes max. }200\mathrm{ mA 4.8 W 5 VDC +5%,-10%, short circuit-proof/90 mA```	```18 ... 32 VDC, typ. 24 VDC yes max. 200 mA- 4.8 W 5 VDC +5%,-10%, short circuit-proof/90 mA```
Redundancy Redundancy functions	redundant 24 V infeed	HIPER-Ring (ring structure), redundant 24 V infeed
Ambient conditions   Operating temperature Storage/transport temperature Relative humidity	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \\ & \hline \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$
Mechanical construction   Dimensions (W x H x D)   Mounting   Weight   Protection class   Housing material	$40 \times 140 \times 77.5 \mathrm{~mm}$   DIN rail or mounting plate   500 g   IP 40   die-cast zink	$40 \times 140 \times 77.5 \mathrm{~mm}$   DIN rail or mounting plate   500 g   IP 40   die-cast zink
Approvals Issued or requested approvals	FM Class 1, Div. 2; C-Tick; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2)	FM Class 1, Div. 2; C-Tick; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2)
Scope of delivery and accessories Scope of delivery Accessories to order separately	device, start-up instructions manual, order no. 039 629-001	device, start-up instructions manual, order no. 039 629-001

OZD Profi 12M G12-1300 EEC
943 256-321

interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for quartz glass FO; long-haul version; approval for Ex-zone 2 (Class 1, Div. 2); extended temperature and humidity range
$2 \times$ optical: 4 sockets BFOC 2.5 (STR)
1 x electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1

PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS)
9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s;
1.5; 3; 6; $12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting)
$\leq 6.5$ bit times
RS 485 level
$-7 \mathrm{~V} . . .+12 \mathrm{~V}$
no
1310 nm
not limited
5-pin terminal block, screw mounting
5-pin terminal block, screw mounting 2 mm sockets

15000 m
10 dB link budget at $1310 \mathrm{~nm} ; A=0.5 \mathrm{~dB} / \mathrm{km}$,
2 dB reserve
10000 m
12 dB link budget at $1310 \mathrm{~nm} ; A=1 \mathrm{~dB} / \mathrm{km}$,
2 dB reserve
10000 m
12 dB link budget at $1310 \mathrm{~nm} ; \mathrm{A}=1 \mathrm{~dB} / \mathrm{km}$,
2 dB reserve

$18 \ldots 32$ VDC, typ. 24 VDC
yes
max. 200 mA
4.8 W
$5 \mathrm{VDC}+5 \%,-10 \%$, short circuit-proof/90 mA
HIPER-Ring (ring structure), redundant 24 V
infeed
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$100 \%$ (condensing)
$40 \times 140 \times 77.5 \mathrm{~mm}$
$40 \times \mathrm{N}$ rail or mounting plate
500 g
IP 40
die-cast zink

FM Class 1, Div. 2; C-Tick; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2)
device, start-up instructions
manual, order no. 039 629-001

## FiberINTERFACES

Field Bus > Profibus Rail Repeaters

Type	OZD Profi 12M P11 PRO	OZD Profi 12M P12 PRO
Order No.	943 904-221   interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for plastic FO; short-haul version;	943 904-321   interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for plastic FO; short-haul version
Product description Port type and quantity	$1 \times$ optical: 2 sockets BFOC 2.5 (STR) $1 x$ electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) $1 \times$ electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1
Electrical interface   Signal type   Bit rate   Signal delay time (optional input/output) Input/output signal Input voltage range Galvanic isolation	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS)   9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s;   1.5; 3; 6; $12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting)   $\leq 6.5$ bit times   RS 485 level $-7 \vee \ldots+12 \vee$   no	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS)   9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s;   1.5; 3; 6; $12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting)   $\leq 6.5$ bit times   RS 485 level   $-7 \mathrm{~V} . . .+12 \mathrm{~V}$   no
Optical interface   Wavelength   Cascadibility	660 nm not limited	660 nm not limited
More Interfaces   Power supply   Signaling contact   Measuring outputs "Optical input power"	5-pin terminal block, screw mounting   5-pin terminal block, screw mounting   3 -pin terminal block, screw mounting	5-pin terminal block, screw mounting   5-pin terminal block, screw mounting   3 -pin terminal block, screw mounting
Network size - length of cable Single mode fiber (SM) $9 / 125 \mu \mathrm{~m}$ Multimode fiber (MM) 50/125 $\mu \mathrm{m}$		-
Multimode fiber (MM) 62.5/125 $\mu \mathrm{m}$	-	-
Multimode fiber HCS (MM) 200/230 $\mu \mathrm{m}$   Multimode fiber POF (MM) 980/1000 $\mu \mathrm{m}$	400 m   8 dB link budget at 660 nm and transmitting power default   A $=8 \mathrm{~dB} / \mathrm{km}, 2 \mathrm{~dB}$ reserve   50 m   15 dB link budget at 660 nm and transmitting power reduced   80 m   20 dB link budget at 660 nm and transmitting power default   $\mathrm{A}=0.2 \mathrm{~dB} / \mathrm{m}, 2 \mathrm{~dB}$ reserve	400 m   8 dB link budget at 660 nm and transmitting power default   $\mathrm{A}=8 \mathrm{~dB} / \mathrm{km}, 2 \mathrm{~dB}$ reserve   50 m   15 dB link budget at 660 nm and transmitting power reduced   80 m   20 dB link budget at 660 nm and transmitting power default   $\mathrm{A}=0.2 \mathrm{~dB} / \mathrm{m}, 2 \mathrm{~dB}$ reserve
Power requirements   Operating voltage   Galvanic isolation   Current consumption   Power consumption   Output voltage/output current (pin6)	```18 ... }32\mathrm{ VDC, typ. }24\mathrm{ VDC yes max. 200 mA 4.8 W 5 VDC +5%, -10%, short circuit-proof/90 mA```	```18 ... 32 VDC, typ. 24 VDC yes max. }200\mathrm{ mA 4.8 W 5 VDC +5%, -10%, short circuit-proof/90 mA```
Redundancy Redundancy functions	redundant 24 V infeed	HIPER-Ring (ring structure), redundant 24 V infeed
Ambient conditions   Operating temperature Storage/transport temperature Relative humidity	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$
Mechanical construction   Dimensions (W x H x D)   Mounting   Weight   Protection class   Housing material	$\begin{aligned} & 35 \times 156 \times 119 \mathrm{~mm} \\ & \text { DIN rail } \\ & 200 \mathrm{~g} \\ & \text { IP } 20 \\ & \text { plastics } \\ & \hline \end{aligned}$	$35 \times 156 \times 119 \mathrm{~mm}$   DIN rail   200 g   IP 20   plastics
Approvals Issued or requested approvals	cUL508, cUL1604 Class1, Div. 2, Groups A,B,C and D; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2); C-Tick	cUL508, cUL1604 Class1, Div. 2, Groups $A, B, C$ and $D ;$ according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2); C-Tick
Scope of delivery and accessories Scope of delivery   Accessories to order separately	device, 2 optical BFOC ST plugs, start-up instructions manual, order no. 039 690-001	device, 4 optical BFOC ST plugs, start-up instructions manual, order no. 039 690-001


OZD Profi 12M G11 PRO	OZD Profi 12M G12 PRO	OZD Profi 12M G12 EEC PRO
$943 \text { 905-221 }$	$943 \text { 905-321 }$	$943 \text { 907-321 }$
interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for quartz glass FO;	interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for quartz glass FO	interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for quartz glass FO; extended temperature and humidity range
$1 \times$ optical: 2 sockets BFOC 2.5 (STR) 1 x electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) 1 x electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) 1 x electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1
PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s; 1.5; 3; 6; $12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting) $\leq 6.5$ bit times RS 485 level $-7 \mathrm{~V} . . .+12 \mathrm{~V}$ no	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s; 1.5; 3; $6 ; 12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting) $\leq 6.5$ bit times RS 485 level $-7 \mathrm{~V} . . .+12 \mathrm{~V}$ no	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s; 1.5; 3; 6; $12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting) $\leq 6.5$ bit times RS 485 level $-7 \mathrm{~V} . . .+12 \mathrm{~V}$ no
860 nm not limited	$\begin{aligned} & 860 \mathrm{~nm} \\ & \text { not limited } \end{aligned}$	$\begin{aligned} & 860 \mathrm{~nm} \\ & \text { not limited } \end{aligned}$
5-pin terminal block, screw mounting 5-pin terminal block, screw mounting 3 -pin terminal block, screw mounting	5-pin terminal block, screw mounting 5-pin terminal block, screw mounting 3 -pin terminal block, screw mounting	5-pin terminal block, screw mounting 5-pin terminal block, screw mounting 3 -pin terminal block, screw mounting
3000 m   13 dB link budget at $860 \mathrm{~nm} ; A=3 \mathrm{~dB} / \mathrm{km}$,   3 dB reserve   3000 m   15 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3.5 \mathrm{~dB} / \mathrm{km}$,   3 dB reserve   1000 m   18 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=8 \mathrm{~dB} / \mathrm{km}$,   3 dB reserve	3000 m   13 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3 \mathrm{~dB} / \mathrm{km}$,   3 dB reserve   3000 m   15 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3.5 \mathrm{~dB} / \mathrm{km}$,   3 dB reserve   1000 m   18 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=8 \mathrm{~dB} / \mathrm{km}$,   3 dB reserve	3000 m   13 dB link budget at $860 \mathrm{~nm} ; A=3 \mathrm{~dB} / \mathrm{km}$,   3 dB reserve   3000 m   15 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3.5 \mathrm{~dB} / \mathrm{km}$,   3 dB reserve   1000 m   18 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=8 \mathrm{~dB} / \mathrm{km}$,   3 dB reserve
```18 ... 32 VDC, typ. 24 VDC yes max. 200 mA 4.8 W 5 VDC +5%, -10%, short circuit-proof/90 mA```	```18 ... 32 VDC, typ. 24 VDC yes max. }200\textrm{mA 4.8 W 5 VDC +5%, -10%, short circuit-proof/90 mA```	```18 ... 32 VDC, typ. 24 VDC yes max. 200 mA 4.8 W 5 VDC +5%, -10%, short circuit-proof/90 mA```
redundant 24 V infeed	HIPER-Ring (ring structure), redundant 24 V infeed	HIPER-Ring (ring structure), redundant 24 V infeed
$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ <95\% (non-condensing)	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 100 \% \text { (condensing) } \end{aligned}$
$\begin{aligned} & 35 \times 156 \times 119 \mathrm{~mm} \\ & \text { DIN rail } \\ & 200 \mathrm{~g} \\ & \text { IP } 20 \\ & \text { plastics } \end{aligned}$	$\begin{aligned} & 35 \times 156 \times 119 \mathrm{~mm} \\ & \text { DIN rail } \\ & 200 \mathrm{~g} \\ & \text { IP } 20 \\ & \text { plastics } \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \times 156 \times 119 \mathrm{~mm} \\ & \text { DIN rail } \\ & 200 \mathrm{~g} \\ & \text { IP } 20 \\ & \text { plastics } \end{aligned}$
cUL508, cUL1604 Class1, Div. 2, Groups A,B,C and D; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2); C-Tick	cUL508, cUL1604 Class1, Div. 2, Groups A,B,C and D; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2); C-Tick	cUL508, cUL1604 Class1, Div. 2, Groups A,B,C and D; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2); C-Tick
device, start-up instructions manual, order no. 039 690-001	device, start-up instructions manual, order no. 039 690-001	device, start-up instructions manual, order no. 039 690-001

FiberINTERFACES

Field Bus > Profibus Rail Repeaters

Type	OZD Profi 12M G11-1300 PRO	OZD Profi 12M G12-1300 PRO
Order No.	943 906-221 interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for quartz glass FO; long-haul version;	943 906-321 interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for quartz glass FO; long-haul version;
Product description Port type and quantity	$1 \times$ optical: 2 sockets BFOC 2.5 (STR) $1 \times$ electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) $1 \times$ electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1
Electrical interface Signal type Bit rate Signal delay time (optional input/output) Input/output signal Input voltage range Galvanic isolation	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s; 1.5; 3; $6 ; 12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting) ≤ 6.5 bit times RS 485 level $-7 \vee \ldots+12 \vee$ no	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s; 1.5; 3; $6 ; 12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting) ≤ 6.5 bit times RS 485 level $-7 \mathrm{~V} . . .+12 \mathrm{~V}$ no
Optical interface Wavelength Cascadibility	1310 nm not limited	1310 nm not limited
More Interfaces Power supply Signaling contact Measuring outputs "Optical input power"	5-pin terminal block, screw mounting 5 -pin terminal block, screw mounting 3 -pin terminal block, screw mounting	5-pin terminal block, screw mounting 5 -pin terminal block, screw mounting 3 -pin terminal block, screw mounting
Network size - length of cable Single mode fiber (SM) 9/125 $\mu \mathrm{m}$	15000 m 10 dB link budget at $1310 \mathrm{~nm} ; \mathrm{A}=0.5 \mathrm{~dB} / \mathrm{km}$, 2 dB reserve	15000 m 10 dB link budget at $1310 \mathrm{~nm} ; \mathrm{A}=0.5 \mathrm{~dB} / \mathrm{km}$, 2 dB reserve
Multimode fiber (MM) 50/125 $\mu \mathrm{m}$	$10000 \mathrm{~m}$ 12 dB link budget at $1310 \mathrm{~nm} ; A=1 \mathrm{~dB} / \mathrm{km}$, 2 dB reserve	$10000 \mathrm{~m}$ 12 dB link budget at $1310 \mathrm{~nm} ; A=1 \mathrm{~dB} / \mathrm{km}$, 2 dB reserve
Multimode fiber (MM) 62.5/125 $\mu \mathrm{m}$	10000 m 12 dB link budget at $1310 \mathrm{~nm} ; A=1 \mathrm{~dB} / \mathrm{km}$, 2 dB reserve	10000 m 12 dB link budget at $1310 \mathrm{~nm} ; A=1 \mathrm{~dB} / \mathrm{km}$, 2 dB reserve
Multimode fiber HCS (MM) 200/230 $\mu \mathrm{m}$ Multimode fiber POF (MM) 980/1000 $\mu \mathrm{m}$		
Power requirements Operating voltage Galvanic isolation Current consumption Power consumption Output voltage/output current (pin6)	```18 ... 32 VDC, typ. 24 VDC yes max. 200 mA 4.8 W 5 VDC +5%, -10%, short circuit-proof/90 mA```	```18 ... 32 VDC, typ. 24 VDC yes max. 200 mA 4.8 W 5 VDC +5%, -10%, short circuit-proof/90 mA```
Redundancy Redundancy functions	redundant 24 V infeed	HIPER-Ring (ring structure), redundant 24 V infeed
Ambient conditions Operating temperature Storage/transport temperature Relative humidity	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$
Mechanical construction Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) Mounting Weight Protection class Housing material	$\begin{aligned} & 35 \times 163 \times 119 \mathrm{~mm} \\ & \text { DIN rail } \\ & 200 \mathrm{~g} \\ & \mathrm{IP} 20 \\ & \text { plastics } \\ & \hline \end{aligned}$	$35 \times 163 \times 119 \mathrm{~mm}$ DIN rail 200 g IP 20 plastics
Approvals Issued or requested approvals	cUL508, cUL1604 Class1, Div. 2, Groups A,B,C and D; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2); C-Tick	cUL508, cUL1604 Class1, Div. 2, Groups A,B,C and D; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2); C-Tick
Scope of delivery and accessories Scope of delivery Accessories to order separately	device, start-up instructions manual, order no. 039 690-001	device, start-up instructions manual, order no. 039 690-001

OZD Profi 12M G12-1300 EEC PRO
943 908-321

interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for quartz glass FO; long-haul version; extended temperature and humidity range
$2 \times$ optical: 4 sockets BFOC 2.5 (STR)
$1 \times$ electrical: Sub-D 9-pin, female, pin assignment according to EN 50170 part 1

PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS)
9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s;
1.5; 3; 6; $12 \mathrm{Mbit/}$ (automatic setting)
≤ 6.5 bit times
RS 485 level
$-7 \mathrm{~V} . . .+12 \mathrm{~V}$
no

1310 nm

not limited
5-pin terminal block, screw mounting
5 -pin terminal block, screw mounting
3 -pin terminal block, screw mounting

15000 m

10 dB link budget at $1310 \mathrm{~nm} ; \mathrm{A}=0.5 \mathrm{~dB} / \mathrm{km}$,
2 dB reserve
10000 m
12 dB link budget at $1310 \mathrm{~nm} ; A=1 \mathrm{~dB} / \mathrm{km}$, 2 dB reserve
10000 m
12 dB link budget at $1310 \mathrm{~nm} ; A=1 \mathrm{~dB} / \mathrm{km}$, 2 dB reserve

18 ... 32 VDC, typ. 24 VDC
yes
max. 200 mA
4.8 W

5 VDC $+5 \%,-10 \%$, short circuit-proof/90 mA
HIPER-Ring (ring structure), redundant 24 V infeed

```
-20 % to +60 % C
-40 % C to +70 %
```

100\% (condensing)
$35 \times 163 \times 119 \mathrm{~mm}$

DIN rail
200 g
IP 20
plastics
cUL508, cUL1604 Class1, Div. 2, Groups
A,B,C and D; according to directive 94/9/EG
(ATEX 95): Ex II 3 G (Zone 2); C-Tick
device, start-up instructions
manual, order no. 039 690-001

FiberINTERFACES

Field Bus > Profibus Ex-Zone 1 Repeaters

Type	OZD Profi G12DU ATEX 1	OZD Profi G12DK ATEX 1
Order No.	943 881-321 interface converter electrical/optical for PROFIBUS networks; for assembly in cabinet; repeater function; approvals for protection zones 1,21, 2 and 22	943 882-321 interface converter electrical/optical for PROFIBUS networks; in plastics cabinet; repeater function; approvals for protection zones 1,21, 2 and 22
Product description Port type and quantity	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) 1 x electrical: Ex-e single clamp	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) 1 x electrical: Ex-e single clamp
Electrical interface Signal type Bit rate Signal delay time (optional input/output) Input/output signal Input voltage range Galvanic isolation	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9,6; 19,2; 45,45; 93,75; 187,5; 500 kbit/s; 1,5; 3; 6; $12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting) ≤ 6.5 bit times RS 485 level $-7 \vee \ldots+12 \vee$ no	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9,6; 19,2; 45,45; 93,75; 187,5; $500 \mathrm{kbit} / \mathrm{s}$; 1,5; 3; $6 ; 12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting) ≤ 6.5 bit times RS 485 level $-7 \vee \ldots+12 \vee$ no
Optical interface Wavelength Cascadibility	860 nm not limited	860 nm not limited
More Interfaces Power supply Signaling contact Measuring outputs "Optical input power"	Ex-e single clamp Ex-e single clamp Ex-e single clamp	Ex-e single clamp Ex-e single clamp Ex-e single clamp
Network size - length of cable Single mode fiber (SM) $9 / 125 \mu \mathrm{~m}$ Multimode fiber (MM) $50 / 125 \mu \mathrm{~m}$ Multimode fiber (MM) 62.5/125 $\mu \mathrm{m}$ Multimode fiber HCS (MM) 200/230 $\mu \mathrm{m}$ Multimode fiber POF (MM) 980/1000 $\mu \mathrm{m}$	3000 m 13 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3 \mathrm{~dB} / \mathrm{km}, 3$ dB reserve 3000 m 15 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3.5 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve 1000 m 18 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=8 \mathrm{~dB} / \mathrm{km}, 3$ dB reserve	3000 m 13 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3 \mathrm{~dB} / \mathrm{km}, 3$ dB reserve 3000 m 15 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3.5 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve 1000 m 18 dB link budget at $860 \mathrm{~nm} ; A=8 \mathrm{~dB} / \mathrm{km}, 3$ dB reserve
Power requirements Operating voltage Galvanic isolation Current consumption Power consumption Output voltage/output current (pin6)	```18 ... 32 VDC, typ. 24 VDC yes max. }200\mathrm{ mA 4.8 W 5 VDC +5%,-10%, short circuit-proof/90 mA```	```18 ... 32 VDC, typ. 24 VDC yes max. 200 mA 4.8 W 5 VDC +5%,-10%, short circuit-proof/90 mA```
Redundancy Redundancy functions	HIPER-Ring (ring structure), redundant 24 V infeed	HIPER-Ring (ring structure), redundant 24 V infeed
Ambient conditions Operating temperature Storage/transport temperature Relative humidity	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C} \\ & 10 \% \text { to } 100 \% \end{aligned}$	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ 10% to 100%
Mechanical construction Dimensions (W x H x D) Mounting Weight Protection class Housing material	$156 \times 125 \times 75$ Screw mountings in cabinet $1.5 \text { kg }$ plastics	$165 \times 194 \times 138 \mathrm{~mm}$ screw mounting on the mounting plate 2.4 kg IP 66 plastics
Approvals Issued or requested approvals	According to directive 94/9/EG (ATEX 95): Ex II 2 G and D (zones 1, 21, 2, 22); cUL 1604 Class 1 Div 2 Groups A, B, C and D; C-Tick	According to directive 94/9/EG (ATEX 95): Ex II 2 G and D (zones 1, 21, 2, 22); cUL 1604 Class 1 Div 2 Groups A, B, C and D; C-Tick
Scope of delivery and accessories Scope of delivery Accessories to order separately	device, start-up instructions manual	device, start-up instructions plastics cap with inspection window OZD SFK ATEX1 order no.: 943 884-001, manual

OZD Profi G12DE ATEX 1
943 883-321

interface converter electrical/optical for PROFIBUS networks; repeater function; in stainless steel cabinet; approvals for protection zones 1,21, 2 and 22
$2 \times$ optical: 4 sockets BFOC 2.5 (STR)
1 x electrical: Ex-e single clamp
PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS)
9,6; 19,2; 45,45; 93,75; 187,5; $500 \mathrm{kbit} / \mathrm{s} ;$
1,5; 3; 6; $12 \mathrm{Mbit} / \mathrm{s}$ (automatic setting)
≤ 6.5 bit times
RS 485 level
-7 V ... +12 V
no

860 nm
not limited

Ex-e single clamp
Ex-e single clamp
Ex-e single clamp

3000 m
13 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3 \mathrm{~dB} / \mathrm{km}$, 3
dB reserve
3000 m
15 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3.5 \mathrm{~dB} / \mathrm{km}, 3$ dB reserve
1000 m
18 dB link budget at $860 \mathrm{~nm} ; A=8 \mathrm{~dB} / \mathrm{km}, 3$
dB reserve

18 ... 32 VDC, typ. 24 VDC
yes
max. 200 mA
4.8 W

5 VDC $+5 \%,-10 \%$, short circuit-proof/90 mA
HIPER-Ring (ring structure), redundant 24 V
infeed
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
10% to 100%

$230 \times 219 \times 108 \mathrm{~mm}$

screw mounting on the mounting plate
3.7 kg

IP 66
stainless steel
According to directive 94/9/EG (ATEX 95): Ex II 2 G and D (zones 1, 21, 2, 22); cUL 1604 Class 1 Div 2 Groups A, B, C and D; C-Tick

device, start-up instructions

manual

FiberINTERFACES

Field Bus > Profibus Plug-on Repeaters

Type	OZD ProfiPlug P21	OZD ProfiPlug P11
Order No.	943 924-321 interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for plasti- and HCS optical fibers, additional D-Sub connector	943 924-221 interface converter electrical/optical for PROFIBUS-field bus networks; repeater function; for plasti- and HCS optical fibers
Product description Port type and quantity	$1 \times$ optical: 2 sockets BFOC 2.5 (STR) $1 \times$ electrical Sub-D 9-pin, male, wired through to $1 \times$ electrical Sub-D 9-pin female, pin assignment according to EN 50170 part 1	$1 \times$ optical: 2 sockets BFOC 2.5 (STR) $1 \times$ electrical: Sub-D 9-pin, male, pin assignment according to EN 50170 part 1
Electrical interface Signal type Bit rate Signal delay time (optional input/output) Input/output signal Input voltage range Galvanic isolation	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s; 1.5 MBit/s (automatic setting) $<1,3 \mu \mathrm{~s}$ RS 485 level $-7 \text { V ... +12 V }$ no	PROFIBUS (DP-V0, DP-V1, DP-V2 und FMS) 9.6; 19.2; 45.45; 93.75; 187.5; 500 kbit/s; 1.5 MBit/s (automatic setting) $<1,3 \mu \mathrm{~s}$ RS 485 level $-7 \text { V ... +12 V }$ no
Optical interface Wavelength Cascadibility	$\begin{aligned} & 650 \mathrm{~nm} \\ & \text { not limited } \end{aligned}$	650 nm not limited
Network size - length of cable Multimode fiber HCS (MM) 200/230 $\mu \mathrm{m}$ Multimode fiber POF (MM) 980/1000 $\mu \mathrm{m}$	100 m propagation time limites 4 dB link budget $\mathrm{A}=8 \mathrm{~dB} / \mathrm{km}, 3 \mathrm{~dB}$ reserve 75 m 17 dB link budget $A=0,2 \mathrm{~dB} / \mathrm{m}, 2 \mathrm{~dB}$ Reserve	100 m propagation time limites 4 dB link budget $\mathrm{A}=8 \mathrm{~dB} / \mathrm{km}, 3 \mathrm{~dB}$ reserve 75 m 17 dB link budget $A=0,2 \mathrm{~dB} / \mathrm{m}, 2 \mathrm{~dB}$ Reserve
Power requirements Operating voltage Galvanic isolation Current consumption Power consumption	5 VDC +/- 10\% out of pin 6 of the profibus unit's Sub-D connector yes max. 11 mA 55 mW	5 VDC $+/-10 \%$ out of pin 6 of the profibus unit's Sub-D connector yes max. 11 mA 55 mW
Ambient conditions Operating temperature Storage/transport temperature Relative humidity	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+55{ }^{\circ} \mathrm{C} \\ & -40{ }^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 10 \% \text { to } 95 \% \text { (non-condensing) } \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 10 \% \text { to } 95 \% \text { (non-condensing) } \end{aligned}$
Mechanical construction Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) Mounting Weight Protection class Housing material	$16 \times 90 \times 57 \mathrm{~mm}$ plugging onto the profibus device $50 \mathrm{~g}$ IP 40 plastics	$16 \times 90 \times 52 \mathrm{~mm}$ plugging onto the profibus device 50 g IP 40 plastics
Approvals Issued or requested approvals	C-Tick	C-Tick
Scope of delivery and accessories Scope of delivery	device, 2 optical BFOC ST plugs, start-up instructions	device, 2 optical BFOC ST plugs, start-up instructions

FiberINTERFACES

Field Bus > Genius Bus Repeaters

Type	OZD Genius G12	OZD Genius G12-1300
Order No.	933 989-021 interface converter electrical/optical for Genius field bus networks; repeater function; for quartz glass und PCF (HCS) FO; approval for Ex-zone 2 (Class 1, Div. 2)	934 233-021 interface converter electrical/optical for Genius field bus networks; repeater function; for quartz glass FO; approval for Ex-zone 2 (Class 1, Div. 2); long-haul version
Product description Port type and quantity	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) $1 \times$ electrical: 4-pin connector with self-locking mechanism	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) 1 x electrical: 4-pin connector with self-locking mechanism
Electrical interface Signal type Bit rate Signal delay time (optional input/output) Input/output signal Genius cable Connection capability Terminator Galvanic isolation	Geniusbus 38.4; 76.8; 153.6 kbit/s 800 ns Geniusbus length: >250 m attenuation at 1 MHz : <8 dB for 150 Ohm cable $<5 \mathrm{~dB}$ for 100 Ohm cable max. 32 terminal devices external shielding in/shielding out: yes; data lines/housing: yes	Geniusbus 38.4; 76.8; 153.6 kbit/s 800 ns Geniusbus length: >250 m attenuation at 1 MHz : $<8 \mathrm{~dB}$ for 150 Ohm cable $<5 \mathrm{~dB}$ for 100 Ohm cable max. 32 terminal devices external shielding in/shielding out: yes; data lines/housing: yes
Optical interface Wavelength Cascadibility	$\begin{aligned} & 860 \mathrm{~nm} \\ & \text { not limited } \end{aligned}$	$\begin{aligned} & 1310 \mathrm{~nm} \\ & \text { not limited } \end{aligned}$
More Interfaces Power supply Signaling contact	5-pin terminal block, screw mounting 5-pin terminal block, screw mounting	5-pin terminal block, screw mounting 5 -pin terminal block, screw mounting
Network size - length of cable Single mode fiber (SM) $9 / 125 \mu \mathrm{~m}$		10000 m 8 dB link budget at $1310 \mathrm{~nm} ; \mathrm{A}=0.5 \mathrm{~dB} / \mathrm{km}, 2$ dB reserve
Multimode fiber (MM) 50/125 $\mu \mathrm{m}$	2700 m 11 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3 \mathrm{~dB} / \mathrm{km}, 3$ dB reserve	7000 m 10 dB link budget at $1310 \mathrm{~nm} ; A=1 \mathrm{~dB} / \mathrm{km}, 3$ dB reserve
Multimode fiber (MM) 62.5/125 $\mu \mathrm{m}$ Multimode fiber HCS (MM) 200/230 $\mu \mathrm{m}$	```2600 m 12 dB link budget at }860\textrm{nm};\textrm{A}=3.5\textrm{dB}/\textrm{km}, dB reserve 1500 m 16 dB link budget at }860\textrm{nm};A=8\textrm{dB}/\textrm{km}, dB reserve```	$7000 \text { m }$ 10 dB link budget at $1310 \mathrm{~nm} ; A=1 \mathrm{~dB} / \mathrm{km}, 3$ dB reserve
Power requirements Operating voltage Current consumption Power consumption	24 VDC (19 ... 35 VDC), non-interchangeable, safety extra-low voltage $130 \mathrm{~mA}$ $3.1 \mathrm{~W}$	24 VDC (19 ... 35 VDC), non-interchangeable, safety extra-low voltage $130 \mathrm{~mA}$ $3.1 \text { W }$
Redundancy Redundancy functions	HIPER-Ring (ring structure), redundant 24 V infeed	HIPER-Ring (ring structure), redundant 24 V infeed
Ambient conditions Operating temperature Storage/transport temperature Relative humidity	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ <95\% (non-condensing)
Mechanical construction Dimensions (W x H x D) Mounting Weight Protection class Housing material	$40 \times 111 \times 73.5 \mathrm{~mm}$ DIN rail or mounting plate $500 \mathrm{~g}$ $\text { IP } 40$ die-cast zink	$40 \times 111 \times 73.5 \mathrm{~mm}$ DIN rail or mounting plate $500 \mathrm{~g}$ $\text { IP } 40$ die-cast zink
Approvals Issued or requested approvals	cUL508, cUL1604 Class1, Div. 2, Groups A,B,C and D; ccording to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2)	cUL508, cUL1604 Class1, Div. 2, Groups A,B,C and D; ccording to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2)
Scope of delivery and accessories Scope of delivery Accessories to order separately	device, start-up instructions manual, order no. 933 989-901	device, start-up instructions manual, order no. 933 989-901

FiberINTERFACES

Field Bus > WorldFIP Repeaters

Type	OZD FIP G3	OZD FIP G3 T
Order No.	933 847-421 interface converter electrical/optical for FIP-field bus networks; repeater function; for quartz glass und PCF (HCS) FO	933 847-521 interface converter electrical/optical for FIP-field bus networks; repeater function; for quartz glass und PCF (HCS) FO; integrated bus termination
Product description Port type and quantity	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) $1 \times$ electrical: Sub-D 9-pin, male, pin assignment acc. to French Standard NF-C 46-604	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) $1 \times$ electrical: Sub-D 9-pin, male, pin assignment acc. to French Standard NF-C 46-604
Electrical interface Signal type Bit rate Signal delay time (optional input/output) Input/output signal Length of FIP cable Connection capability Terminator Galvanic isolation	World FIP 1 Mbit/s $<1 \mu \mathrm{~s}$ FIP Bus 100 m max. 16 terminal data devices no shielding/housing: no; data lines/housing: yes	World FIP 1 Mbit/s $<1 \mu \mathrm{~s}$ FIP Bus 100 m max. 16 terminal data devices yes, 150 Ohm shielding/housing: no; data lines/housing: yes
Optical interface Wavelength Cascadibility	860 nm at a maximal line attenuation of the optical network with fiber G 50/125: $0 \ldots 60 \mathrm{~dB}$ with fiber G 62.5/125: 0 ... 75 dB with fiber S 200/230: 0 ... 60 dB	860 nm at a maximal line attenuation of the optical network with fiber G 50/125: $0 \ldots 60 \mathrm{~dB}$ with fiber G 62.5/125: $0 \ldots 75 \mathrm{~dB}$ with fiber S 200/230: 0 ... 60 dB
More Interfaces Power supply Signaling contact	5-pin terminal block, screw mounting 5-pin terminal block, screw mounting	5-pin terminal block, screw mounting 5-pin terminal block, screw mounting
Network size - length of cable Multimode fiber (MM) 50/125 $\mu \mathrm{m}$ Multimode fiber (MM) 62.5/125 $\mu \mathrm{m}$ Multimode fiber HCS (MM) 200/230 $\mu \mathrm{m}$	```2500 m 11 dB link budget at }860\textrm{nm}; A=3\textrm{dB}/\textrm{km}\mathrm{ , 3dB reserve 2500 m 12 dB link budget at }860\textrm{nm};A=3.5\textrm{dB}/\textrm{km}\mathrm{ , 3 dB reserve 1500 m 16 dB link budget at }860\textrm{nm}; A = 8 dB/km 3dB reserve```	```2500 m 11 dB link budget at }860\textrm{nm};A=3\textrm{dB}/\textrm{km}\mathrm{ , 3dB reserve 2500 m 12 dB link budget at }860\textrm{nm};A=3.5\textrm{dB}/\textrm{km}\mathrm{ , 3dB reserve 1500 m 16 dB link budget at }860\textrm{nm};A=8\textrm{dB}/\textrm{km}\mathrm{ , 3 dB reserve```
Power requirements Operating voltage Current consumption Power consumption	24 VDC -20\% ... 48 VDC +10\% non-interchangeable, safety extra-low voltage 150 mA at $+24 \mathrm{VDC} ; 85 \mathrm{~mA}$ at +48 VDC 4.1 W	24 VDC -20\% ... 48 VDC +10\% non-interchangeable, safety extra-low voltage 150 mA at $+24 \mathrm{VDC} ; 85 \mathrm{~mA}$ at +48 VDC 4.1 W
Redundancy Redundancy functions	HIPER-Ring (ring structure), redundant 24 V infeed	HIPER-Ring (ring structure), redundant 24 V infeed
Ambient conditions Operating temperature Storage/transport temperature Relative humidity	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$
Mechanical construction Dimensions (W x H x D) Mounting Weight Protection class Housing material	$40 \times 111 \times 73.5 \mathrm{~mm}$ DIN rail or mounting plate $500 \mathrm{~g}$ $\text { IP } 40$ die-cast zink	$40 \times 111 \times 73.5 \mathrm{~mm}$ DIN rail or mounting plate $500 \mathrm{~g}$ $\text { IP } 40$ die-cast zink
Approvals Issued or requested approvals	C-Tick	C-Tick
Scope of delivery and accessories Scope of delivery Accessories to order separately	device, start-up instructions manual, order no. 933 847-901	device, start-up instructions manual, order no. 933 847-901

FiberINTERFACES

Field Bus > Modbus Plus Repeaters

Type	OZD Modbus Plus G12	OZD Modbus Plus G12-1300
Order No.	943 740-021 interface converter electrical/optical for Modbus Plus-field bus networks; repeater function; for quartz glass und PCF (HCS) FO; approval for Ex-zone 2 (Class 1, Div. 2)	943 821-021 interface converter electrical/optical for Modbus Plus-field bus networks; repeater function; for quartz glass FO; long-haul version
Product description Port type and quantity	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) $1 \times$ electrical: Sub-D 9-pin, female, pin assignment according to Modbus Plus-Standard	$2 \times$ optical: 4 sockets BFOC 2.5 (STR) $1 \times$ electrical: Sub-D 9-pin, female, pin assignment according to Modbus Plus-Standard
Electrical interface Signal type Bit rate Signal delay time (optional input/output) Input/output signal Length of Modbus cable Connection capability Terminator Galvanic isolation	```Modbus Plus 1 Mbit/s <1 \mus Modbus Plus Bus 100 m max. }31\mathrm{ terminal devices external shielding/housing: no; data lines/housing: yes```	Modbus Plus 1 Mbit/s $<1 \mu \mathrm{~s}$ Modbus Plus Bus 100 m max. 31 terminal devices external shielding/housing: no; data lines/housing: yes
Optical interface Wavelength Cascadibility	860 nm not limited	$1310 \text { nm }$ not limited
More Interfaces Power supply Signaling contact	5-pin terminal block, screw mounting 5-pin terminal block, screw mounting	5-pin terminal block, screw mounting 5-pin terminal block, screw mounting
Network size - length of cable Single mode fiber (SM) 9/125 $\mu \mathrm{m}$		8000 m 8 dB link budget at $1310 \mathrm{~nm} ; A=0.5 \mathrm{~dB} / \mathrm{km}$, 2 dB reserve
Multimode fiber (MM) 50/125 $\mu \mathrm{m}$	$2300 \mathrm{~m}$ 10 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve	7000 m 10 dB link budget at $1310 \mathrm{~nm} ; A=1 \mathrm{~dB} / \mathrm{km}$, 3 dB reserve
Multimode fiber (MM) 62.5/125 $\mu \mathrm{m}$ Multimode fiber HCS (MM) 200/230 $\mu \mathrm{m}$	```2300 m 11 dB link budget at }860\textrm{nm};A=3.5\textrm{dB}/\textrm{km}\mathrm{ , 3dB reserve 1500 m 16 dB link budget at }860\textrm{nm};A=8\textrm{dB}/\textrm{km}\mathrm{ , 3 dB reserve```	$\begin{aligned} & 7000 \mathrm{~m} \\ & 10 \mathrm{~dB} \text { link budget at } 1310 \mathrm{~nm} ; A=1 \mathrm{~dB} / \mathrm{km} \text {, } \\ & 3 \mathrm{~dB} \text { reserve } \end{aligned}$
Power requirements Operating voltage Current consumption Power consumption	24 VDC -20\% ... 48 VDC +10\% non-interchangeable, safety extra-low voltage 120 mA at $+24 \mathrm{VDC} ; 65 \mathrm{~mA}$ at +48 VDC 3.1 W	24 VDC -20\% ... 48 VDC +10\% non-interchangeable, safety extra-low voltage 120 mA at $+24 \mathrm{VDC} ; 65 \mathrm{~mA}$ at +48 VDC 3.1 W
Redundancy Redundancy functions	HIPER-Ring (ring structure), redundant 24 V infeed	HIPER-Ring (ring structure), redundant 24 V infeed
Ambient conditions Operating temperature Storage/transport temperature Relative humidity	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$
Mechanical construction Dimensions (W x H x D) Mounting Weight Protection class Housing material	$40 \times 111 \times 73.5 \mathrm{~mm}$ DIN rail or mounting plate $620 \mathrm{~g}$ $\text { IP } 40$ die-cast zink	$40 \times 111 \times 73.5 \mathrm{~mm}$ DIN rail or mounting plate $620 \mathrm{~g}$ $\text { IP } 40$ die-cast zink
Approvals Issued or requested approvals	cUL Class 1, Div.2; C-Tick	C-Tick
Scope of delivery and accessories Scope of delivery Accessories to order separately	device, start-up instructions manual, order no. 933 989-901	device, start-up instructions manual, order no. 933 989-901

FiberINTERFACES

Field Bus > RS 485 Repeaters

Type	OZD 485 G12 PRO	OZD 485 G12-1300 PRO
Order No.	943 894-321 interface converter electrical/optical for RS 485 field bus networks; repeater function; for quartz glass FO; electrical full duplex or semi-duplex mode	943 895-321 interface converter electrical/optical for RS 485 field bus networks; repeater function; for quartz glass FO; electrical full duplex or semi-duplex mode; long-haul version
Product description Port type and quantity	$2 \times$ optical: BFOC 2.5 (STR) socket $1 \times$ electrical: 12-pin terminal block	2 x optical: BFOC 2.5 (STR) socket $1 \times$ electrical: 6-pin terminal block
Electrical interface Signal type Input resistance Input voltage range Jitter Distortion of bit duration Bit rate	RS 485 10 kOhm -7 V ... +12 V typ. 10 nspp typ. 1 nspp 0 to $1.5 \mathrm{Mbit} / \mathrm{s} \mathrm{NRZ}$	RS 485 10 kOhm -7 V ... +12 V typ. 10 nspp typ. 1 nspp 0 to $1.5 \mathrm{Mbit} / \mathrm{s}$ NRZ
Optical interface Wavelength Optical input power	$\begin{aligned} & 860 \mathrm{~nm} \\ & -30 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & 1310 \mathrm{~nm} \\ & -31 \mathrm{dBm} \end{aligned}$
More Interfaces Power supply Signaling contact Voltage output	7-pin terminal block 7-pin terminal block 3-pin terminal block	7-pin terminal block 7-pin terminal block 3-pin terminal block
Network size - length of cable Single mode fiber (SM) $9 / 125 \mu \mathrm{~m}$ Multimode fiber (MM) 50/125 $\mu \mathrm{m}$ Multimode fiber (MM) 62.5/125 $\mu \mathrm{m}$ System delay time	$\begin{aligned} & 2300 \mathrm{~m} \\ & 10 \mathrm{~dB} \text { link budget at } 860 \mathrm{~nm} ; A=3 \mathrm{~dB} / \mathrm{km} \text {, } \\ & 3 \mathrm{~dB} \text { reserve } \\ & 3100 \mathrm{~m} \\ & 14 \mathrm{~dB} \text { link budget at } 860 \mathrm{~nm} ; A=3.5 \mathrm{~dB} / \mathrm{km} \text {, } \\ & 3 \mathrm{~dB} \text { reserve } \\ & <1,56 \text { us } \end{aligned}$	$\begin{aligned} & 22000 \mathrm{~m} \\ & 13 \mathrm{~dB} \text { link budget at } 1310 \mathrm{~nm} ; \mathrm{A}=0.5 \mathrm{~dB} / \mathrm{km} \text {, } \\ & 2 \mathrm{~dB} \text { reserve } \\ & 16000 \mathrm{~m} \\ & 18 \mathrm{~dB} \text { link budget at } 1310 \mathrm{~nm} ; \mathrm{A}=1.0 \mathrm{~dB} / \mathrm{km} \text {, } \\ & 2 \mathrm{~dB} \text { reserve } \\ & 16000 \mathrm{~m} \\ & 18 \mathrm{~dB} \text { link budget at } 1310 \mathrm{~nm} ; \mathrm{A}=1.0 \mathrm{~dB} / \mathrm{km} \text {, } \\ & 2 \mathrm{~dB} \text { reserve } \\ & <1.56 \text { us } \end{aligned}$
Power requirements Operating voltage Current consumption Power consumption	18 ... 32 VDC (typ. 24 VDC) 140 mA at $24 \mathrm{VDC}, 65 \mathrm{~mA}$ at 32 VDC <3.5 W	18 ... 32 VDC (typ. 24 VDC) 140 mA at $24 \mathrm{VDC}, 65 \mathrm{~mA}$ at 32 VDC <3.5 W
Redundancy Redundancy functions	redundant ring, redundant power supply	redundant ring, redundant power supply
Ambient conditions Operating temperature Storage/transport temperature Relative humidity	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C} \\ & <95 \% \text { (non-condensing) } \end{aligned}$
Mechanical construction Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) Mounting Weight Protection class Housing material	$\begin{aligned} & 35 \times 156 \times 119 \\ & \text { DIN rail } \\ & 195 \mathrm{~g} \\ & \text { IP } 20 \\ & \text { plastics } \end{aligned}$	$\begin{aligned} & 35 \times 163 \times 119 \\ & \text { DIN rail } \\ & 215 \mathrm{~g} \\ & \text { IP } 20 \\ & \text { plastics } \end{aligned}$
Approvals Issued or requested approvals	cUL508, cUL1604 Class1, Div. 2, Groups A,B,C and D; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2); C-Tick	cUL508, cUL1604 Class1, Div. 2, Groups A,B,C and D; according to directive 94/9/EG (ATEX 95): Ex II 3 G (Zone 2); C-Tick
Scope of delivery and accessories Scope of delivery Accessories to order separately	device, start-up instructions manual, order no. 039 516-001	device, start-up instructions manual, order no. 039 516-001

OZD 485 G12 BAS
943 893-321

interface converter electrical/optical for RS 485 field bus networks; repeater function; for quartz glass FO; electrical semi-duplex mode
$2 \times$ optical: BFOC 2.5 (STR) socket
$1 \times$ electrical: 6-pin terminal block
RS 485
10 kOhm
-7 V ... +12 V
typ. 10 nspp
typ. 1 nspp
0 to $1.5 \mathrm{Mbit} / \mathrm{s}$ NRZ

860 nm
$-30 \mathrm{dBm}$

5-pin terminal block

$-$

2300 m
10 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3 \mathrm{~dB} / \mathrm{km}$
3 dB reserve
3100 m
14 dB link budget at $860 \mathrm{~nm} ; \mathrm{A}=3.5 \mathrm{~dB} / \mathrm{km}$ 3 dB reserve
$<1,56$ us
18 ... 32 VDC (typ. 24 VDC)
80 mA at $24 \mathrm{VDC}, 65 \mathrm{~mA}$ at 32 VDC
<2,1 W
$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
<95\% (non-condensing)
$35 \times 156 \times 119$
DIN rail
180 g
IP 20
plastics

C-Tick
device, start-up instructions
manual, order no. 039 516-001

The shortest data link between office and factory.

Clip-on modules connect two different worlds together.

Hirschmann's digital modules are perfectly suited for all situations requiring the interference-free transmission of classical RS 232/serial signals under highly demanding operating conditions over long distances between computers and peripheral devices such as printers, terminals and machines in automation technology.

Optical fiber transmission systems effectively elliminate the risk of RFI/EMI. At the same time, they protect valuable terminal devices against possible damage through optical isolation, thereby contributing to the protection of investments.

- In large companies where data is centrally collected, the switch to Hirschmann FiberINTERFACES will extend the transmission paths and permit the placement of cables in interference-prone environments.
- The modules, in compact clip-on housings made of stable centrifugal cast zinc, can be placed directly on the terminal device or mounted on a DIN rail via an adapter. Some of the modules obtain their voltage supply from the data signal and are therefore not dependent on an external voltage source.

OZDV 2451 G

OZDV 2471 G

Overview V.24/RS 232 Media Converters.

	OZDV 2451 P	OZDV 2471 P
	0-60 m	0-50m
OZDV 2451 P	17 dB	14 dB
	0-50 m	0-100 m
OZDV 2471 P	14 dB	29 dB

$\mathbf{8 6 0} \mathbf{n m}$		
	OZDV 2451 G	OZDV 2471 G
$\mathbf{0 - 1 5 0 0 \mathrm { m }}$	$0-800 \mathrm{~m}$	
OZDV 2451 G	7.5 dB	5.5 dB
$\mathbf{0 - 8 0 0} \mathbf{m}$	$\mathbf{0 - 6 7 0 0} \mathbf{m}$	
OZDV 2471 G	5.5 dB	23 dB

[^0]
FIBERINTERFACES

Serial > V.24/RS 232 Media Converters

Type	OZZV 2451 P	OZDV 2451 G
Order No.	O43 316-021	

OZDV 2471 P	OZDV 2471 G	OZDV 2471 G-1300
943 340-021		

The upgradation training for transmission paths.

Hybrid components and OptoQuick components make circuits fit for fiber optic cables.

The upgrade to fiber optics can be as easy as this: hybrid components made by Hirschmann consist of a transmission and receiving unit, both installed in a compact metal housing. Together, they constitute a transmission system for digital data. Hybrid components are directly integrated on the printed circuit board of the user - that is all that is required. The advantages of optical fiber transmission technology are therefore available - without the expenditure on
optical fiber development, namely: no risk of RF/EMI, no disturbance from ground potential, increased transmission distances. Optical transmission and reception elements are also available from Hirschmann in the OptoQuick range. These also include optical coupling units and connectors with quick-connection optical technology.

- The use of hybrid components makes it possible to reap the benefits of optical transmission technology such as distortion-free transmission in sensitive medical investigation devices - without high levels of expenditure.
- All Hirschmann hybrid components offer reliable protection against electromagnetic radiation thanks to their compact metal housing.

OSAH 200

OVKS 2,2

OVKD 01

FIBERINTERFACES

Hybrids modules and OptoQuick components > Audio Hybrids

Type	OSAH 200	OEAH 200
Order No.	943 043-001 optical audio transmitter hybrid; PCB mounting	optical audio receiver hybrid; PCB mounting
Product description Port type and quantity	1 electrical port: 1 pin	1 electrical port: 1 pin
Electrical interface Input voltage Input resistance Output voltage Admissible load resistance at the output Linear distortion (30 Hz to 20 kHz) Distorsion factor (at $0 \mathrm{dBm} / 1 \mathrm{kHz}$) Unweighted signal-to-noise-ratio (relative 0 dBm) Bandwidth (-3 dB)	$\begin{aligned} & 0 \mathrm{dBm}=0.775 \text { Veff } \\ & >10 \mathrm{kOhm} \\ & - \\ & - \\ & \leq 0.5 \mathrm{~dB} \text { at } 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} / \leq 0.8 \mathrm{~dB} \text { at }-40^{\circ} \mathrm{C} \text { to } \\ & +80^{\circ} \mathrm{C} \\ & \leq 0.1 \% \text { at } 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} / \leq 0.15 \% \text { at }-40^{\circ} \mathrm{C} \text { to } \\ & +80^{\circ} \mathrm{C} \\ & >73 \mathrm{~dB} \text { at } 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} />68 \mathrm{~dB} \text { at }-40^{\circ} \mathrm{C} \text { to } \\ & +80^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \text { to } 30 \mathrm{kHz} \text { at } 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} / 15 \mathrm{~Hz} \text { to } 30 \\ & \mathrm{kHz} \text { at }-40^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0 \mathrm{dBm}=0.775 \text { Veff (no load) } \\ & >=600 \text { Ohm } \\ & \leq 0.5 \mathrm{~dB} \text { at } 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} / \leq 0.8 \mathrm{~dB} \text { at }-40^{\circ} \mathrm{C} \text { to } \\ & +80^{\circ} \mathrm{C} \\ & \leq 0.1 \% \text { at } 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} / \leq 0.15 \% \text { at }-40^{\circ} \mathrm{C} \text { to } \\ & +80^{\circ} \mathrm{C} \\ & >73 \mathrm{~dB} \text { at } 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} />68 \mathrm{~dB} \text { at }-40^{\circ} \mathrm{C} \text { to } \\ & +80^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \text { to } 30 \mathrm{kHz} \text { at } 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} / 15 \mathrm{~Hz} \text { to } 30 \\ & \mathrm{kHz} \text { at }-40^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C} \end{aligned}$
Optical interface Wavelength Launchable optical power in multi-mode fiber (MM) POF 980/1000 Optical input power	660 nm with OVKD 01-B (LED 013) (accessories) $>500 \mu \mathrm{Wpp},-3 \mathrm{dBm}$ at $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ with OVKD 01-B (LED 013) (accessories)	$>2.0 \mu \mathrm{Wpp},-27 \mathrm{dBm}$ at $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ with OVKD 01-B (SFH 203 P) (accessories)
Network size - length of cable Multimode fiber POF (MM) 980/1000 $\mu \mathrm{m}$	88 m 24 dB link budget, $\mathrm{A}=0.25 \mathrm{~dB} / \mathrm{m}, 2 \mathrm{~dB}$ system reserve with OVKD 01-B (LED 013) (accessories) and OEAH 200 with OVKD 01-B (SFH 203 P) (accessories)	88 m 24 dB link budget, $\mathrm{A}=0.25 \mathrm{~dB} / \mathrm{m}, 2 \mathrm{~dB}$ system reserve with OSAH 200 with OVKD 01-B (LED 013) (accessories) and OVKD 01-B (SFH 203 P) (accessories)
Power requirements Operating voltage Current consumption Power consumption	$\begin{aligned} & +12 \mathrm{VDC}+-10 \% \\ & 55 \mathrm{~mA} \\ & 0.7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & +12 \mathrm{VDC}+-10 \% \\ & 35 \mathrm{~mA} \\ & 0.4 \mathrm{~W} \end{aligned}$
Drawing		
Ambient conditions Operating temperature Storage/transport temperature Relative humidity (non-condensing)	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ 10% to 90%	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ 10% to 90%
Mechanical construction Dimensions (W x H x D) Mounting Weight Protection class Pin assignment	see "Drawing" on PCB 15 g IP 65 see "Drawing" pin 1: input; pin 2, 4-8, 10-12: GND; pin 3: gain setting; pin 9: LED pin 13-20: VCC; pin 21-24: N.C.	see "Drawing" on PCB 15 g IP 65 see "Drawing" pin 1: pin diode; pin 2-10: GND; pin 11: output pin 12: gain setting; pin 13-24: VCC
Scope of delivery and accessories Scope of delivery Accessories to order separately	1 hybird, 1 operating instructions optical converter OVKD 01-B (LED 013), order no. 936 215-009 scope of delivery: 1 converter housing with integrated and adjusted transmitter element, type OVK for platic fiber On request, we will be pleased to supply a data sheet indicating the dimensions and terminal assignment of the converter housing.	1 hybird, 1 operating instructions optical converter OVKD 01-B (SFH 203 P), order no. 936 215-037 scope of delivery: 1 converter housing with integrated and adjusted receiver element, type OVK for platic fiber On request, we will be pleased to supply a data sheet indicating the dimensions and terminal assignment of the converter housing.

FIBERINTERFACES

Hybrids modules and OptoQuick components > OptoQuick Components

Type	OVKS 2,2 schwarz/black	OVKS 2,2 grau/grey
Order No.	936 200-001 fiber optic plug; for plastic fiber with an external diameter of 2.2 mm , strain relief 40 N	936 200-002 fiber optic plug; for plastic fiber with an external diameter of 2.2 mm , strain relief 40 N
Product description Construction type Colour	OVK OptoQuick black	OVK OptoQuick grey
Mechanical construction Mounting	-	-
Scope of delivery and accessories Scope of delivery	20 fiber optic plugs, each consisting of a plug body and a strain relief 1 polishing tool 1 operating instructions	20 fiber optic plugs, each consisting of a plug body and a strain relief 1 polishing tool 1 operating instructions

| Type | OVKD 01 schwarz/black | OVKD 01 grau/grey |
| :--- | :--- | :--- | :--- |
| Order No. | 936 205-001 | 936 205-002 |
| | | |
| Product description
 Construction type
 Colour | diode socket;
 for plastic FO | diode socket;
 for plastic FO |
| Mechanical construction
 Mounting | OVK OptoQuick
 black | OVK OptoQuick
 grey |
| Scope of delivery and accessories
 Scope of delivery | on PCB | on PCB |

OVKK 01 schwarz/black	OVKK 01 grau/grey
934 101-100	934 101-106
fiber optic coupling; for plastic FO	fiber optic coupling; for plastic FO
OVK OptoQuick black	OVK OptoQuick grey
for use in housing sidewalls and for use as an independent coupling	for use in housing sidewalls and for use as an independent coupling
20 couplings, 20 retaining nuts 1 operating instructions	20 couplings, 20 retaining nuts 1 operating instructions

OVKD 01-B (LED 013)	OVKD 01-B (SFH 203 P)
936 215-009	
diode socket with optical transmitter element; for plastic FO	diode socket with optical receiver element; for plastic FO
OVK OptoQuick black	OVK OptoQuick black
on PCB	on PCB
diode socket with integrated and adjusted transmitter element LED 013 1 operating instructions	diode socket with integrated and adjusted receiver element SFH 203 P 1 operating instructions

For a complete product solution, you need accessories.

Workable ideas for your application.

Hirschmann system accessories for FiberINTERFACES offer practical and workable solutions that are perfectly adapted to the product in question, enabling easy assembly while ensuring secure power supply. Several reasons why there is only one optimum addition to our field buses and digital modules: Hirschmann DIN rail power supplies, plug-in power supplies and DIN rail adapters.

This is one-stop shopping that saves real money. You not only benefit from a complete solution that has been thought through to the last detail, but you also benefit from our worldwide distribution network. This way you don't just have the latest technology working for you ... you also get time on your side.

- Like every product from the comprehensive Hirschmann range, our accessories satisfy the high expectations of our clients in terms of material selection, processing quality, reliability and long life.
- As the ideal supplement to Hirschmann FiberINTERFACES, our accessories not only offer solutions that have been thought-out down to the finest details, but also save valuable time during installation.

RPS 30

RPS 80 EEC

PSW 5-24

d
OZDV HA

FIBERINTERFACES

Accessories > DIN Rail Power Supplies

Type	RPS 30	RPS 80 EEC
Order No.	943 662-003	943 662-080

RPS 120 EEC

943 662-120

24 V DC DIN rail power supply unit
1 Bi-stable, quick-connect spring clamp terminals, 3-pin
1 Bi-stable, quick-connect spring clamp terminals, 6 -pin

230 V
$100-240$ V AC (-15/+10\%); 50-60Hz or 110 to 300 V DC (+/-20\%)
max. 1,4-0,65 A at 100-240 V AC
max. 1,2-0,45 A bei 120-300 V DC
$<15 \mathrm{~A}$ at 100 and 230 V AC
24-28 V DC (typ. 24,1 V); externally adjustable
min. 5-4,5 A continuous
7,5-6,7 A for typ. 4 sec

LED (DC OK, Overload)

Power supply units can be connected in parallel
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(\mathrm{ab} 60^{\circ} \mathrm{C}\right.$ Derating)
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
5 to 95 \%
$40 \mathrm{~mm} \times 124 \mathrm{~mm} \times 117 \mathrm{~mm}$
DIN Rail 35 mm
620 g
IP 20

EN 61000-6-1
EN 61000-6-2 (includes EN 55024)

EN 61000-3-2, 61000-3-3, 61000-6-3, 61000-6-4
cUL 508 (E 198865)
cUL 60950 (E 137006)
UL 1604 Class 1 Div. 2 (E246877)

Rail power supply,
Description and operating manual

FIBERINTERFACES

Accessories > Plug-in Power Supplies

Type	PSW 5-24
Order No.	943 008-001
	plug-in power supply
Electrical interfaces	
Input voltage	90 to 260 VAC; 47 to 60 Hz
Current consumption	400 mA
Power consumption	-
Output voltage	+5V
Output current	max. 2.4 A
Ripple voltage	max. 75 mVpp
More Interfaces	
Voltage output	extra-low voltage plug, design M8 acc. IEC 947-5-2
Ambient conditions	
Operating temperature	$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Storage/transport temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Relative humidity (non-condensing)	5\% to 95\%
Mechanical construction Weight	200 g
EMC interference immunity EN 61000-6-2 Immunity for industrial environments	EN 61000-6-2
EMC emitted immunity EN 55022	EN 55022 limit class B
Scope of delivery and accessories Scope of delivery	device

FIBERINTERFACES

Accessories > Mounting accessoiries

Type	OZDV HA	OZD SFK ATEX 1
Order No.	933 920-001 mechanical adapter for the plug-on modules OZDV 2451 P, OZDV 2451 G, OZDV 2471 P, OZDV 2471 G, OZDV 2471 G1300	$943 \text { 884-001 }$ Plastics cap with inspection window.
Scope of delivery and accessories Scope of delivery	1 device, 1 operating instructions	1 Plastics cap

Index by type

Type
Order Number Page

OEAH 200	943 044-001	36
OSAH 200	943 043-001	36
OVKD 01 grau/grey	936 205-002	38
OVKD 01 schwarz/black	936 205-001	38
OVKD 01-B (LED 013)	936 215-009	39
OVKD 01-B (SFH 203 P)	936 215-037	39
OVKK 01 grau/grey	934 101-106	39
OVKK 01 schwarz/black	934 101-100	39
OVKS 2,2 grau/grey	936 200-002	38
OVKS 2,2 schwarz/black	936-200-001	38
OZD 485 G12 BAS	943 893-321	27
OZD 485 G12 PRO	943 894-321	26
OZD 485 G12-1300 PRO	943 895-321	26
OZD FIP G3	933 847-421	24
OZD FIP G3 T	933 847-521	24
OZD Genius G12	933 989-021	23
OZD Genius G12-1300	934 233-021	23
OZD Modbus Plus G12	943 740-021	25
OZD Modbus Plus G12-1300	943 821-021	25
OZD Profi 12M G11 PRO	943 905-221	17
OZD Profi 12M G11-1300	943 729-221	14
OZD Profi 12M G11-1300 PRO	943 906-221	18
OZD Profi 12M G12	943 727-321	13
OZD Profi 12M G12 EEC	943 730-321	13
OZD Profi 12M G12 EEC PRO	943 907-321	17
OZD Profi 12M G12 PRO	943 905-321	17
OZD Profi 12M G12-1300	943 729-321	14
OZD Profi 12M G12-1300 EEC	943 256-321	15
OZD Profi 12M G12-1300 EEC PRO	943 908-321	19
OZD Profi 12M G12-1300 PRO	943 906-321	18
OZD Profi 12M P11	943 728-221	12
OZD Profi 12M P11 PRO	943 904-221	16
OZD Profi 12M P12	943 728-321	12
OZD Profi 12M P12 PRO	943 904-321	16
OZD Profi G12DE ATEX 1	943 883-321	20
OZD Profi G12DK ATEX 1	943 882-321	20
OZD Profi G12DU ATEX 1	943 881-321	21
OZD ProfiPlug P11	943 924-221	22
OZD ProfiPlug P21	943 924-321	22
OZD SFK ATEX 1	943 884-001	45
OZDV 2451 G	943 299-021	32
OZDV 2451 P	943 316-021	32
OZDV 2471 G	943 341-021	33
OZDV 2471 G-1300	933 990-021	33
OZDV 2471 P	943 340-021	33
OZDV HA	933 920-001	45
PSW 5-24	943 008-001	44
RPS 120 EEC	943 662-120	43
RPS 30	943 662-003	42
RPS 80 EEC	943 662-080	42

Index by order number

Order Number Type
Page

933 847-421	OZD FIP G3	24
933 847-521	OZD FIP G3 T	24
933 920-001	OZDV HA	45
933 989-021	OZD Genius G12	23
933 990-021	OZDV 2471 G-1300	33
934 101-100	OVKK 01schwarz/black	39
934 101-106	OVKK 01grau/grey	39
934 233-021	OZD Genius G12-1300	23
936 200-001	OVKS 2,2 schwarz/black	38
936 200-002	OVKS 2,2 grau/grey	38
936 205-001	OVKD 01 schwarz/black	38
936 205-002	OVKD 01 grau/grey	38
936 215-009	OVKD 01-B (LED 013)	39
936 215-037	OVKD 01-B (SFH 203 P)	39
943 008-001	PSW 5-24	44
943 043-001	OSAH 200	36
943 044-001	OEAH 200	36
943 256-321	OZD Profi 12M G12-1300 EEC	15
943 299-021	OZDV 2451 G	32
943 316-021	OZDV 2451 P	32
943 340-021	OZDV 2471 P	33
943 341-021	OZDV 2471 G	33
943 662-003	RPS 30	42
943 662-080	RPS 80 EEC	42
943 662-120	RPS 120 EEC	43
943 727-321	OZD Profi 12M G12	13
943 728-221	OZD Profi 12M P11	12
943 728-321	OZD Profi 12M P12	12
943 729-221	OZD Profi 12M G11-1300	14
943 729-321	OZD Profi 12M G12-1300	14
943 730-321	OZD Profi 12M G12 EEC	13
943 740-021	OZD Modbus Plus G12	25
943 821-021	OZD Modbus Plus G12-1300	25
943 881-321	OZD Profi G12DU ATEX 1	21
943 882-321	OZD Profi G12DK ATEX 1	20
943 883-321	OZD Profi G12DE ATEX 1	20
943 884-001	OZD SFK ATEX 1	45
943 893-321	OZD 485 G12 BAS	27
943 894-321	OZD 485 G12 PRO	26
943 895-321	OZD 485 G12-1300 PRO	26
943 904-221	OZD Profi 12M P11 PRO	16
943 904-321	OZD Profi 12M P12 PRO	16
943 905-221	OZD Profi 12M G11 PRO	17
943 905-321	OZD Profi 12M G12 PRO	17
943 906-221	OZD Profi 12M G11-1300 PRO	18
943 906-321	OZD Profi 12M G12-1300 PRO	18
943 907-321	OZD Profi 12M G12 EEC PRO	17
943 908-321	OZD Profi 12M G12-1300 EEC PRO	19
943 924-221	OZD ProfiPlug P11	22
943 924-321	OZD ProfiPlug P21	22

Hirschmann. Simply a good Connection.

Hirschmann Automation and Control GmbH
Industrial ETHERNET
FiberINTERFACES
Industrial Connectors
Electronic Control Systems
WWW.HIRSCHMANN-AC.COM

WWW.UNITED-NETWORX.COM

Regarding the details in this catalog:

Alterations may have been made to the product after the editorial deadline for this publication, namely 04/01/2007. The manufacturer reserves the right to alter the construction and form, manufacture different shades and amend the scope of delivery during the delivery period insofar as the alterations and differences are acceptable to the buyer while allowing for the seller's interests. Insofar as the seller or the manufacturer uses signs or numbers to mark the order or the ordered item, no rights may be derived from this alone. The illustrations may also contain accessories and special equipment which are not part of the mass-produced scope of delivery. Color differences are attributable to technical aspects of the printing process. This publication may also contain types and support services that are not made available/rendered in some countries. The information/details in this publication merely contain general descriptions or performance factors which, when applied in an actual situation, do not always correspond with the described form, and may be amended by way of the further development of products. The desired performance factors shall only be deemed binding if these are expressly agreed on conclusion of the contract. This catalog will be used internationally. However, comments on statutory, legal and fiscal provisions and effects only apply to the Federal Republic of Germany at the time of the editorial deadline for this publication. Please consult your pertinent seller about the provisions and effects that apply to your country, and regarding the latest binding version.

[^0]: ${ }^{1)}$ with fiber $\mathrm{S} 980 / 1000 \mu \mathrm{~m}(0.25 \mathrm{~dB} / \mathrm{m}$ attenuation and 2 dB system reserve)
 ${ }^{2)}$ with fiber $G 50 / 125 \mu \mathrm{~m}(3 \mathrm{~dB} / \mathrm{km}$ attenuation and 3 dB system reserve)
 ${ }^{3}$) with fiber $\mathrm{G} 62.5 / 125 \mu \mathrm{~m}$ ($3.5 \mathrm{~dB} / \mathrm{km}$ attenuation and 3 dB system reserve)

